Molecular Geometry and Shape

Druglike compounds possessing three-dimensional molecular structures often demonstrate favorable pharmacodynamics (PD) and pharmacokinetics (PK) profiles including potency, efficacy, absorption, distribution, metabolism, excretion, and toxicity. In addition, drug-target interactions are an emergent phenomenon but not a fully divisible property. Multiple polar, and often distant binding groups, and their precise spatial arrangement need to be discovered collectively to generate a high-quality lead compound.

The prevalence of modern cross-coupling reactions has resulted in overpopulation of liner and planar shaped synthetic molecules containing lipophilic functional groups. The disconnection between ideal druglike molecular architectures and contemporary combinational libraries is attributable to the missed opportunity in high-throughput screening (HTS). It motivates us to innovate globular molecules that are capable of projecting diverse functionality to distant dispositions of asymmetric three-dimensional space.

References

Druglike property

Leeson, P. D., Bento, A. P., Gaulton, A., Hersey, A., Manners, E. J., Radoux, C. J., & Leach, A. R. (2021). Target-Based evaluation of “Drug-Like” properties and ligand efficiencies. Journal of medicinal chemistry64(11), 7210-7230.

Serafini, M., Cargnin, S., Massarotti, A., Tron, G. C., Pirali, T., & Genazzani, A. A. (2021). What’s in a Name? Drug Nomenclature and Medicinal Chemistry Trends using INN Publications. Journal of Medicinal Chemistry64(8), 4410-4429.

Karges, J., Stokes, R. W., & Cohen, S. M. (2021). Metal complexes for therapeutic applications. Trends in Chemistry3(7), 523-534.

Bharate, S. S., Mignani, S., & Vishwakarma, R. A. (2018). Why are the majority of active compounds in the CNS domain natural products? A critical analysis. Journal of medicinal chemistry61(23), 10345-10374.

Young, R. J., & Leeson, P. D. (2018). Mapping the efficiency and physicochemical trajectories of successful optimizations. Journal of Medicinal Chemistry61(15), 6421-6467.

Keserű, G. M., Erlanson, D. A., Ferenczy, G. G., Hann, M. M., Murray, C. W., & Pickett, S. D. (2016). Design principles for fragment libraries: maximizing the value of learnings from pharma fragment-based drug discovery (FBDD) programs for use in academia. Journal of medicinal chemistry59(18), 8189-8206.

3D molecules in medicine

Prosser, K. E., Stokes, R. W., & Cohen, S. M. (2020). Evaluation of 3-dimensionality in approved and experimental drug space. ACS medicinal chemistry letters11(6), 1292-1298.

Hamilton, D. J., Dekker, T., Klein, H. F., Janssen, G. V., Wijtmans, M., O’Brien, P., & de Esch, I. J. (2020). Escape from planarity in fragment-based drug discovery: A physicochemical and 3D property analysis of synthetic 3D fragment libraries. Drug Discovery Today: Technologies38, 77-90.

Da Silva, F., Bret, G., Teixeira, L., Gonzalez, C. F., & Rognan, D. (2019). Exhaustive repertoire of druggable cavities at protein–protein interfaces of known three-dimensional structure. Journal of Medicinal Chemistry, 62(21), 9732-9742.

Meyers, J., Carter, M., Mok, N. Y., & Brown, N. (2016). On the origins of three-dimensionality in drug-like molecules. Future medicinal chemistry8(14), 1753-1767.

Leach, A. R., Gillet, V. J., Lewis, R. A., & Taylor, R. (2010). Three-dimensional pharmacophore methods in drug discovery. Journal of medicinal chemistry53(2), 539-558.

Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from flatland: increasing saturation as an approach to improving clinical success. Journal of medicinal chemistry52(21), 6752-6756.

Medicinal chemistry

Uehling, M. R., King, R. P., Krska, S. W., Cernak, T., & Buchwald, S. L. (2019). Pharmaceutical diversification via palladium oxidative addition complexes. Science363(6425), 405-408.

Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D., & Doyle, A. G. (2018). Predicting reaction performance in C–N cross-coupling using machine learning. Science360(6385), 186-190.

Boström, J., Brown, D. G., Young, R. J., & Keserü, G. M. (2018). Expanding the medicinal chemistry synthetic toolbox. Nature Reviews Drug Discovery17(10), 709-727.

Lin, S., Dikler, S., Blincoe, W. D., Ferguson, R. D., Sheridan, R. P., Peng, Z., … & Dreher, S. D. (2018). Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science361(6402), eaar6236.

Brown, D. G., & Bostrom, J. (2016). Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? Miniperspective. Journal of medicinal chemistry59(10), 4443-4458.

Buitrago Santanilla, A., Regalado, E. L., Pereira, T., Shevlin, M., Bateman, K., Campeau, L. C., … & Dreher, S. D. (2015). Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science347(6217), 49-53.

Chemical synthesis

Talele, T. T. (2020). Opportunities for tapping into three-dimensional chemical space through a quaternary carbon. Journal of Medicinal Chemistry63(22), 13291-13315.

Morrison, C. N., Prosser, K. E., Stokes, R. W., Cordes, A., Metzler-Nolte, N., & Cohen, S. M. (2020). Expanding medicinal chemistry into 3D space: Metallofragments as 3D scaffolds for fragment-based drug discovery. Chemical science11(5), 1216-1225.

Garcia‐Castro, M., Zimmermann, S., Sankar, M. G., & Kumar, K. (2016). Scaffold diversity synthesis and its application in probe and drug discovery. Angewandte Chemie International Edition55(27), 7586-7605.

Carreira, E. M., & Fessard, T. C. (2014). Four-membered ring-containing spirocycles: synthetic strategies and opportunities. Chemical Reviews114(16), 8257-8322.

Hung, A. W., Ramek, A., Wang, Y., Kaya, T., Wilson, J. A., Clemons, P. A., & Young, D. W. (2011). Route to three-dimensional fragments using diversity-oriented synthesis. Proceedings of the National Academy of Sciences108(17), 6799-6804.

LaPlante, S. R., Fader, L. D., Fandrick, K. R., Fandrick, D. R., Hucke, O., Kemper, R., … & Edwards, P. J. (2011). Assessing atropisomer axial chirality in drug discovery and development. Journal of medicinal chemistry54(20), 7005-7022.